Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.704
1.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38678792

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Diethylhexyl Phthalate , Down-Regulation , Epigenesis, Genetic , Leydig Cells , Methyltransferases , Prenatal Exposure Delayed Effects , Testosterone , Animals , Female , Male , Pregnancy , Rats , Adenosine/analogs & derivatives , Cholesterol Side-Chain Cleavage Enzyme/genetics , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/analogs & derivatives , Down-Regulation/drug effects , Epigenesis, Genetic/drug effects , Leydig Cells/drug effects , Methyltransferases/genetics , Prenatal Exposure Delayed Effects/chemically induced , Rats, Sprague-Dawley , Testosterone/blood
2.
Transfusion ; 64(5): 808-823, 2024 May.
Article En | MEDLINE | ID: mdl-38590100

BACKGROUND: Phthalate chemicals are used to manufacture plastic medical products, including many components of cardiopulmonary bypass (CPB) circuits. We aimed to quantify iatrogenic phthalate exposure in pediatric patients undergoing cardiac surgery and examine the link between phthalate exposure and postoperative outcomes. STUDY DESIGN AND METHODS: The study included pediatric patients undergoing (n=122) unique cardiac surgeries at Children's National Hospital. For each patient, a single plasma sample was collected preoperatively and two additional samples were collected postoperatively upon return from the operating room and the morning after surgery. Concentrations of di(2-ethylhexyl) phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. RESULTS: Patients were subdivided into three groups, according to surgical procedure: (1) cardiac surgery not requiring CPB support, (2) cardiac surgery requiring CPB with a crystalloid prime, and (3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with an RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience postoperative complications. RBC washing was an effective strategy to reduce phthalate levels in CPB prime. DISCUSSION: Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with an RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure.


Cardiopulmonary Bypass , Humans , Cardiopulmonary Bypass/adverse effects , Female , Male , Child, Preschool , Infant , Child , Diethylhexyl Phthalate/blood , Prevalence , Plastics , Phthalic Acids/blood , Cardiac Surgical Procedures/adverse effects , Adolescent , Infant, Newborn
3.
J Hazard Mater ; 470: 134175, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574662

Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.


Biosensing Techniques , Diethylhexyl Phthalate , Electrochemical Techniques , Transistors, Electronic , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , CRISPR-Cas Systems , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Nucleic Acid Amplification Techniques , Polystyrenes/chemistry , Thiophenes , Water Pollutants, Chemical/analysis
4.
ACS Appl Mater Interfaces ; 16(15): 18285-18299, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38574184

Changes in diet culture and modern lifestyle contributed to a higher incidence of gastrointestinal-related diseases, including gastritis, implicated in the pathogenesis of gastric cancer. This observation raised concerns regarding exposure to di(2-ethylhexyl) phthalate (DEHP), which is linked to adverse health effects, including reproductive and developmental problems, inflammatory response, and invasive adenocarcinoma. Research on the direct link between DEHP and gastric cancer is ongoing, and further studies are required to establish a conclusive association. In our study, extremely low concentrations of DEHP exerted significant effects on cell migration by promoting the epithelial-mesenchymal transition in gastric cancer cells. This effect was mediated by the modulation of the PI3K/AKT/mTOR and Smad2 signaling pathways. To address the DEHP challenges, our initial design of TPGS-conjugated fucoidan, delivered via pH-responsive nanoparticles, successfully demonstrated binding to the P-selectin protein. This achievement has not only enhanced the antigastric tumor efficacy but has also led to a significant reduction in the expression of malignant proteins associated with the condition. These findings underscore the promising clinical therapeutic potential of our approach.


Diethylhexyl Phthalate , Phthalic Acids , Stomach Neoplasms , Humans , Plasticizers , Phosphatidylinositol 3-Kinases
5.
J Environ Sci (China) ; 143: 47-59, 2024 Sep.
Article En | MEDLINE | ID: mdl-38644023

Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.


Apoptosis , Deer , Diethylhexyl Phthalate , Oxidative Stress , Animals , Apoptosis/drug effects , Diethylhexyl Phthalate/toxicity , Oxidative Stress/drug effects , Peroxiredoxin VI/metabolism , Reactive Oxygen Species/metabolism , Endocrine Disruptors/toxicity
6.
Arch Environ Contam Toxicol ; 86(3): 288-303, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568248

In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.


Diethylhexyl Phthalate , Drinking Water , Phthalic Acids , Child , Adult , Humans , Phthalic Acids/analysis , Water Supply , Risk Assessment
7.
Nutrients ; 16(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38674852

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Asthma , Mice, Inbred BALB C , Probiotics , Animals , Asthma/chemically induced , Probiotics/pharmacology , Female , Mice , Ovalbumin , Ligilactobacillus salivarius , Diethylhexyl Phthalate/toxicity , Disease Models, Animal , Pregnancy , Lung/pathology , Lung/drug effects , Dietary Supplements , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid
8.
Ecotoxicol Environ Saf ; 276: 116319, 2024 May.
Article En | MEDLINE | ID: mdl-38615642

Di-hexyl phthalate (2-ethylhexyl) (DEHP) has been confirmed to cause female reproductive toxicity in humans and model animals by affecting the survival of ovarian granulosa cells (GCs), but the interrelationships between DEHP's on autophagy, apoptosis, and inflammation in GCs are not clear. Our previous study demonstrated that DEHP exposure resulted in the disturbance of intestinal flora associated with serum LPS release, which in turn led to impaired ovarian function. LPS has also been shown to determine cell fate by modulating cellular autophagy, apoptosis, and inflammation. Therefore, this study investigated the role and link between LPS and autophagy, apoptosis, and inflammation of GCs in DEHP-induced ovarian injury. Here, we constructed an in vivo injury model by continuous gavage of 0-1500 mg/kg of DEHP in female mice for 30 days and an in vitro injury model by treatment of human ovarian granulosa cells (KGN) cells with mono-2- ethylhexyl ester (MEHP, an active metabolite of DEHP in vivo). In addition, the expression of relevant pathway molecules was detected by immunohistochemistry, immunofluorescence, qRT-PCR, and Western blotting after the addition of the autophagy inhibitor 3-methyladenine (3-MA), the apoptosis inhibitor Z-VAD- FMK and the NF-κB inhibitor BAY11-7082. The current study found that autophagy and apoptosis were significantly activated in GCs of DEHP-induced atretic follicles in vivo and found that MEHP-induced KGN cells autophagy and apoptosis were independent and potentially cytotoxic of each other in vitro. Further studies confirmed that DEHP exposure resulted in LPS release from the intestinal tract and entering the ovary, thereby participating in DEHP-induced inflammation of GCs. In addition, we found that exogenous LPS synergized with MEHP could activate the NF-κB signaling pathway to induce inflammation and apoptosis of GCs in a relatively prolonged exposure condition. Meanwhile, inhibition of inflammatory activation could rescue apoptosis and estrogen secretion function of GCs induced by MEHP combined with LPS. These results indicated that the increased LPS influenced by DEHP might cooperate with MEHP to induce inflammatory apoptosis of GCs, an important cause of ovarian injury in mice.


Apoptosis , Autophagy , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Granulosa Cells , Inflammation , Lipopolysaccharides , Female , Animals , Diethylhexyl Phthalate/toxicity , Autophagy/drug effects , Granulosa Cells/drug effects , Granulosa Cells/pathology , Lipopolysaccharides/toxicity , Apoptosis/drug effects , Mice , Inflammation/chemically induced , Inflammation/pathology , Reproduction/drug effects , Humans
10.
Sci Rep ; 14(1): 7944, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575598

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/analysis , Plastics , Vacuum , Phthalic Acids/chemistry , Polyethylene/analysis , Polymers , Dibutyl Phthalate , Esters/analysis , China
11.
Ecotoxicol Environ Saf ; 277: 116394, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38663197

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of the plasticizer di-2-ethylhexyl phthalic acid (DEHP), and studies have shown that MEHP causes serious reproductive effects. However, its exact mechanisms of action remain elusive. In this study, we aimed to investigate the reproductive effects of MEHP and preliminarily explore its underlying molecular mechanisms. We found that TM3 cells gradually secreted less testosterone and intracellular free cholesterol with increasing MEHP exposure. MEHP exposure inhibited lipophagy and the Sirt1/Foxo1/Rab7 signaling pathway in TM3 cells, causing aberrant accumulation of intracellular lipid droplets. Addition of the Sirt1 agonist SRT1720 and Rab7 agonist ML-098 alleviated the inhibition of lipophagy and increased free cholesterol and testosterone contents in TM3 cells. SRT1720 alleviated the inhibitory effect of MEHP on the Sirt1/Foxo1/Rab7 signaling pathway, whereas ML-098 only alleviated the inhibition of Rab7 protein expression by MEHP and had no effect on Sirt1 and Foxo1 protein expression. This suggests that MEHP inhibits lipophagy in TM3 cells by suppressing the Sirt1/Foxo1/Rab7 signaling pathway, ultimately leading to a further decrease in cellular testosterone secretion. This study improves our current understanding of the toxicity and molecular mechanisms of action of MEHP and provides new insights into the reproductive effects of phthalic acid esters.


Diethylhexyl Phthalate , Signal Transduction , Sirtuin 1 , Testosterone , rab7 GTP-Binding Proteins , Sirtuin 1/metabolism , Signal Transduction/drug effects , Animals , Mice , Diethylhexyl Phthalate/analogs & derivatives , Diethylhexyl Phthalate/toxicity , Cell Line , rab GTP-Binding Proteins/metabolism , Forkhead Box Protein O1/metabolism , Plasticizers/toxicity , Cholesterol
12.
Chemosphere ; 356: 141922, 2024 May.
Article En | MEDLINE | ID: mdl-38593956

The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.


Diethylhexyl Phthalate , Endoplasmic Reticulum Stress , Plasticizers , Diethylhexyl Phthalate/toxicity , Humans , Endoplasmic Reticulum Stress/drug effects , Plasticizers/toxicity , Animals , Environmental Pollutants/toxicity , Oxidative Stress/drug effects
13.
Food Chem Toxicol ; 188: 114686, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663762

Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), two common types of phthalates, are known to cause reproductive and developmental toxicity in animals and humans. The reference doses (RfD) of DBP and DEHP should be determined by sensitive endpoints. We here aimed to identify sensitive endpoints for DBP- and DEHP-induced such toxicity using published literatures. By examining the impacts of maternal exposure to DBP or DEHP on anogenital distance (AGD) and semen quality of offspring, we discovered that DBP or DEHP caused AGD decline in boys but increase in girls with DBP being more potent and the first 14weeks of pregnancy being more susceptible, suggesting a chemical- and time-dependent phenomenon. We also identified AGD shortening and total sperm count reduction as two sensitive endpoints for DBP- or DEHP-induced reproductive and developmental toxicity, respectively. Based upon these two endpoints and the employment of the Bayesian benchmark dose approach with an uncertainty factor of 3,000, we estimated the RfD values of DBP and DEHP were 15 µg/kg/day and 36 µg/kg/day, respectively. Thus, we uncover previously unrecognized phenomena of DBP- or DEHP-induced reproductive and developmental toxicity and establish new and comparable or more conservative RfDs for the risk assessment of phthalates exposure in humans.


Dibutyl Phthalate , Reproduction , Male , Humans , Reproduction/drug effects , Female , Animals , Dibutyl Phthalate/toxicity , Pregnancy , Diethylhexyl Phthalate/toxicity , Phthalic Acids/toxicity , Maternal Exposure/adverse effects
14.
Respir Res ; 25(1): 139, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38521900

BACKGROUND: DEHP, a common plasticizer known for its hormone-disrupting properties, has been associated with asthma. However, a significant proportion of adult asthma cases are "non-atopic", lacking a clear etiology. METHODS: In a case-control study conducted between 2011 and 2015, 365 individuals with current asthma and 235 healthy controls from Kaohsiung City were enrolled. The control group comprised individuals without asthma, Type 2 Diabetes Mellitus (T2DM), hypertension, or other respiratory/allergic conditions. The study leveraged asthma clusters (Clusters A to F) established in a prior investigation. Analysis involved the examination of urinary DEHP metabolites (MEHP and MEHHP), along with the assessment of oxidative stress, sphingolipid metabolites, and inflammatory biomarkers. Statistical analyses encompassed Spearman's rank correlation coefficients, multiple logistic regression, and multinomial logistic regression. RESULTS: Asthma clusters (E, D, C, F, A) exhibited significantly higher ORs of MEHHP exposures compared to the control group. When considering asthma-related comorbidities (T2DM, hypertension, or both), patients without comorbidities demonstrated significantly higher ORs of the sum of primary and secondary metabolites (MEHP + MEHHP) and MEHHP compared to those with asthma comorbidities. A consistent positive correlation between urinary HEL and DEHP metabolites was observed, but a consistent negative correlation between DEHP metabolites and selected cytokines was identified. CONCLUSION: The current study reveals a heightened risk of MEHHP and MEHP + MEHHP exposure in specific asthma subgroups, emphasizing its complex relationship with asthma. The observed negative correlation with cytokines suggests a new avenue for research, warranting robust evidence from epidemiological and animal studies.


Asthma , Diabetes Mellitus, Type 2 , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Hypertension , Phthalic Acids , Adult , Animals , Humans , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/urine , Environmental Exposure , Case-Control Studies , Asthma/chemically induced , Asthma/diagnosis , Asthma/epidemiology , Cytokines
15.
Sci Total Environ ; 923: 171447, 2024 May 01.
Article En | MEDLINE | ID: mdl-38447714

Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used phthalate esters (PAEs) that raise growing ecotoxicological concerns due to detrimental effects on living organisms and ecosystems. This study performed hepatotoxic investigations on crucian carp under chronic low-dosage (CLD) exposure to DEHP at environmentally relevant concentrations (20-500 µg/L). The results demonstrated that the CLD exposure induced irreversible damage to the liver tissue. Multi-omics (transcriptomics and metabolomics) analyses revealed the predominant toxicological mechanisms underlying DEHP-induced hepatotoxicity by inhibiting energy production pathways and the up-regulation of the purine metabolism. Disruption of metabolic pathways led to excessive reactive oxygen species (ROS) production and subsequent oxidative stress. The adverse metabolic effects were exacerbated by an interplay between oxidative stress and endoplasmic reticulum stress. This study not only provides new mechanistic insights into the ecotoxicological effects of DEHP under chronic low-dosage exposure, but also suggests a potential strategy for further ecological risk assessment of PAEs.


Carps , Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/metabolism , Ecosystem , Carps/metabolism , Multiomics , Phthalic Acids/toxicity , Phthalic Acids/analysis
16.
Ecotoxicol Environ Saf ; 274: 116216, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38503103

Phthalic acid esters (PAEs) are widely used as plasticizers and have been suggested to engender adverse effects on glucose metabolism. However, epidemiological data regarding the PAE mixture on type 2 diabetes (T2DM), as well as the mediating role of oxidative stress are scarce. This case-control study enrolled 206 T2DM cases and 206 matched controls in Guangdong Province, southern China. The concentrations of eleven phthalate metabolites (mPAEs) and the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were determined. Additionally, biomarkers of T2DM in paired serum were measured to assess glycemic status and levels of insulin resistance. Significantly positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP) and Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with T2DM (P < 0.001). Restricted cubic spline modeling revealed a non-linear dose-response relationship between MEHHP and T2DM (Pnon-linear = 0.001). The Bayesian kernel machine regression and quantile g-computation analyses demonstrated a significant positive joint effect of PAE exposure on T2DM risk, with MEHHP being the most significant contributor. The mediation analysis revealed marginal evidence that oxidative stress mediated the association between the mPAEs mixture and T2DM, while 8-OHdG respectively mediated 26.88 % and 12.24 % of MEHP and MEHHP on T2DM risk individually (Pmediation < 0.05). Di(2-ethylhexyl) phthalate (DEHP, the parent compound for MEHP and MEHHP) was used to further examine the potential molecular mechanisms by in silico analysis. Oxidative stress may be crucial in the link between DEHP and T2DM, particularly in the reactive oxygen species metabolic process and glucose import/metabolism. Molecular simulation docking experiments further demonstrated the core role of Peroxisome Proliferator Activated Receptor alpha (PPARα) among the DEHP-induced T2DM. These findings suggest that PAE exposure can alter oxidative stress via PPARα, thereby increasing T2DM risk.


Diabetes Mellitus, Type 2 , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Phthalic Acids , Humans , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Diabetes Mellitus, Type 2/epidemiology , Case-Control Studies , Bayes Theorem , PPAR alpha/metabolism , Phthalic Acids/urine , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Oxidative Stress , Biomarkers/metabolism , Environmental Exposure/adverse effects
17.
Soft Matter ; 20(13): 2892-2899, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38465518

The use of DEHP (diethylhexyl phthalate) is now banned for most applications in Europe; the exception is for blood bags, where its toxicity is overshadowed by its ability to extend the storage life of red blood cells. Another plasticiser, BTHC (butanoyl trihexyl citrate), is used in paediatric blood bags but does not stabilise blood cells as effectively. Interactions between plasticisers and lipids are investigated with a phospholipid, DMPC, to understand the increased stability of blood cells in the presence of DEHP as well as bioaccumulation and identify differences with BTHC. Mixed monolayers of DMPC and DEHP or BTHC were studied on Langmuir troughs where surface pressure/area isotherms can be measured. Neutron reflection measurements were made to determine the composition and structure of these mixed layers. A large amount of plasticiser can be incorporated into a DMPC monolayer but once an upper limit is reached, plasticiser is selectively removed from the interface at high surface pressures. The upper limit is found to occur between 40-60 mol% for DEHP and 20-40 mol% for BTHC. The areas per molecule are also different with DEHP being in the range of 50-100 Å2 and BTHC being 65-120 Å2. Results indicate that BTHC does not fit as well as DEHP in DMPC monolayers which could help explain the differences observed with regards to the stability of blood cells.


Butyrates , Diethylhexyl Phthalate , Humans , Child , Phospholipids , Dimyristoylphosphatidylcholine , Blood Preservation/methods
18.
Environ Pollut ; 348: 123793, 2024 May 01.
Article En | MEDLINE | ID: mdl-38513944

Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.


Benzhydryl Compounds , Diethylhexyl Phthalate , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Plastics/chemistry , Phenols
19.
Food Chem Toxicol ; 187: 114609, 2024 May.
Article En | MEDLINE | ID: mdl-38522500

OBJECTIVE: DEHP has thyroid toxicity and affects thyroid function. However, the mechanism is unclear. METHODS: The offspring of SD rats were gavaged with different doses of DEHP from in utero to 8 or 12 weeks old. We observed the thyroid morphology with HE and autophagosomes with TEM. The THs levels were tested with ELISA. The apoptosis level was tested by flow cytometry. The levels of apoptosis-related genes, autophagy-related genes and Rap1 pathway genes, were measured with qRT-PCR and Western blot. We established an MEHP-treated Nthy-ori 3-1 cell model and inhibited the Rap1 to verify the mechanism. RESULTS: DEHP could cause pathological damage and ultrastructure damage of thyroids in offspring rats. After DEHP exposure, the THs levels were altered, the apoptosis levels increased, and autophagosomes appeared. DEHP significantly affected the levels of apoptosis-related genes and autophagy-related genes. DEHP also affected the levels of Rap1 pathway, which was correlated with the levels of apoptosis and autophagy. After inhibiting Rap1 in Nthy-ori 3-1 cells, the THs levels were altered. Rap1 pathway was inhibited and the levels of apoptosis and autophagy were down-regulated. CONCLUSION: DEHP could induce the apoptosis and autophagy of the thyroid, and Rap1 signaling pathway may play a significant role.


Diethylhexyl Phthalate , Thyroid Gland , Rats , Animals , Diethylhexyl Phthalate/toxicity , Rats, Sprague-Dawley , Signal Transduction , Autophagy , Apoptosis
20.
Environ Pollut ; 348: 123861, 2024 May 01.
Article En | MEDLINE | ID: mdl-38537796

Sediments are important sinks for di-(2-ethylhexyl) phthalate (DEHP), a plasticizer, and thus, maintaining the sediment quality is essential for eliminating plasticizers in aqueous environments and recovering the sediment ecological functions. To mitigate the potential risks of endocrine-disrupting compounds, identifying an effective and eco-friendly degradation process of organic pollutants from sediments is important. However, sustainable and efficient utilization of slow pyrolysis for converting shark fishbone to generate shark fishbone biochar (SFBC) has rarely been explored. Herein, SFBC biomass was firstly produced by externally incorporating heteroatoms or iron oxide onto its surface in conjunction with peroxymonosulfate (PMS) to promote DEHP degradation and explore the associated benthic bacterial community composition from the sediment in the water column using the Fe-N-SFBC/PMS system. SFBC was pyrolyzed at 300-900 °C in aqueous sediment using a carbon-advanced oxidation process (CAOP) system based on PMS. SFBC was rationally modified via N or Fe-N doping as a radical precursor in the presence of PMS (1 × 10-5 M) for DEHP removal. The innovative SFBC/PMS, N-SFBC/PMS, and Fe-N-SFBC/PMS systems could remove 82%, 65%, and 90% of the DEHP at pH 3 in 60 min, respectively. The functionalized Fe3O4 and heteroatom (N) co-doped SFBC composite catalysts within a hydroxyapatite-based structure demonstrated the efficient action of PMS compared to pristine SFBC, which was attributed to its synergistic behavior, generating reactive radicals (SO4•-, HO•, and O2•-) and non-radicals (1O2) involved in DEHP decontamination. DEHP was significantly removed using the combined Fe-N-SFBC/PMS system, revealing that indigenous benthic microorganisms enhance their performance in DEHP-containing sediments. Further, DEHP-induced perturbation was particularly related to the Proteobacteria phylum, whereas Sulfurovum genus and Sulfurovum lithotrophicum species were observed. This study presents a sustainable method for practical, green marine sediment remediation via PMS-CAOP-induced processes using a novel Fe-N-SFBC composite material and biodegradation synergy.


Charcoal , Diethylhexyl Phthalate , Phthalic Acids , Plasticizers , Peroxides , Carbon , Geologic Sediments
...